



## Influence of Music Stimulation on Heartbeat Fluctuation

**Takashi AOKI<sup>1</sup>, Yoshinori ADACHI<sup>2</sup> and Shoji SUZUKI<sup>3</sup>**

<sup>1</sup>College of Engineering, Chubu University (Aichi, Japan)

<sup>2</sup>College of Business Administration and Information Science, Chubu University (Aichi, Japan)

<sup>3</sup>Suzuka National College of Technology (Mie, Japan)

**Abstract:** The influence of music stimulation on heartbeat fluctuation was determined. Subjects were 10 healthy males aged from 22 to 23. The music used was a Japanese pop song entitled "Kujira-12" sung by the group Judy and Mary. The heartbeat was measured for 5 min without any stimulation, then for 5 min while being stimulated by hearing the song, and finally, for 5 min with no stimulation. The heart rate was unchanged, but LF/HF decreased significantly during stimulation (LF and HF denote the low frequency component and the high frequency component of the power spectra of heartbeat fluctuations, respectively). This suggested that the stimulation suppressed the activity of the sympathetic nervous system during stimulation. LF was increased significantly after stimulation. This suggested that the mental stress decreased after stimulation. The stimulation by the music used in the experiment seemed to be helpful for music therapy.

**Keywords:** Music stimulation, music therapy, heartbeat fluctuation, mental stress

### 1. Introduction

Recently, it was found that application of music therapy is efficacious for a number of nervous diseases. The music therapy field is interdisciplinary, because it includes not only nervous disease therapy, but also psychology, nursing, welfare and education and research on biomedical effects from music therapy has been actively undertaken<sup>1,2)</sup>. In 2001, an academic society for music therapy was established in Japan.

In today's modern society, increasing mental stress, anxiety and fear make the autonomic nervous system become off balance, resulting in lifestyle-related diseases. Most of these diseases are derived from an excessively activated sympathetic nervous system. In order to treat *mibyo* (a situation between healthiness and having a disease, i.e. a pre-symptomatic state) accompanying an indefinite complaint, it is important to decrease the action of the sympathetic nervous system, and increase the action of the parasympathetic nervous system. In this respect, music therapy is efficacious. It was recently found that Mozart's music has abundant effective sound characteristics for this purpose<sup>3)</sup>. Since effective music therapy helps rest the mind and body, it is considered that the music therapy is a simple and useful tool to treat *mibyo*. The success of the therapy, however, depends on the music type as it has been

reported that hard rock music increases the activity level of the sympathetic nervous system<sup>2)</sup>.

The purpose of this study was to determine changes in the low frequency component LF and the high frequency component HF of the power spectra of heartbeat fluctuations, when subjects were stimulated by listening to a Japanese pop song, "Kujira-12" sung by the group Judy and Mary. The HF is dominated by the parasympathetic nervous system and its value is decreased when activities of the parasympathetic nervous system are lowered by problems in the autonomic nervous system. The LF is controlled by both the parasympathetic and sympathetic nervous systems. Both HF and LF are decreased by mental stress. Also, HF/LF ratios are increased with increasing activities of the sympathetic nervous system<sup>4-6)</sup>.

### 2. Experimental

The pulse (heartbeat) of the left wrist was measured with a sampling rate of 0.01s using a heartbeat sensor (TK-701T, Nihon Koden Co. Japan). The output signal from the sensor was amplified by an amplifier (AB601G Nihon Koden Co. Japan) and fed into a personal computer through a GPIB and saved. The measurement was begun just after the subject was seated in a chair and was in a stable state mentally and physically. The heartbeat was measured for 5 min without being stimulated by the music, then for 5 min while being stimulated, and finally, 5 min with no music stimulation. The control experiment was carried out in the same protocol as the stimulation experiment described above, without music stimulation. The subject

Takashi AOKI, Ph.D., in<sup>1</sup> 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.

Phone +81-568-51-1111 Ext.2506, Fax.+81-568-52-0134  
E-mail aoki@isc.chubu.ac.jp



put on headphones hooked up to a CD player which was controlled by one of the experimenters. The subjects in the experiment were 10 healthy males aged from 22 to 23. The room temperature was kept constant at 24°C.

### 3. Time-Series Analysis of Heartbeat Intervals

Each time interval (a-a interval) between a pulse peak and its subsequent pulse peak was obtained from the measured heartbeat data; then time-series data of a-a intervals were obtained. Re-sampling with 100Hz was done for the time series data of a-a intervals by the linear interpolation technique<sup>7</sup>. The average value calculated from the time series data of a-a intervals (re-sampled with 100Hz) was subtracted from the same time series data of a-a intervals. Power spectra (the relationship between power and frequency) for the time series data of a-a intervals were calculated by the DFT (Discrete Fourier Transform) method adopting the Hamming window. The *HF* component was determined by calculating the area from 0.15Hz to 0.45Hz in the power spectra. Likewise, the *LF* component was determined from 0.05Hz to 0.15Hz<sup>7</sup>.

## 4. Results and discussion

In the discussion below, the periods before stimulation, during stimulation and after stimulation are denoted as  $\tau_b$ ,  $\tau_d$  and  $\tau_a$ , respectively, each of these are 5 min as described above.

### 4.1 Heartbeat

Before stimulation, heartbeat  $P$  of the subjects individually varied from about 40/min at the minimum to 60/min at the maximum. Therefore, changing rates  $R_d$  and  $R_a$  as defined by eqs.(1) and (2) were used to discuss changes in  $P$  values.

$$R_d = \frac{P_d - P_b}{P_b}, \quad (1)$$

$$R_a = \frac{P_a - P_b}{P_b}. \quad (2)$$

Here,  $P_b$ ,  $P_d$ , and  $P_a$  denote average values of heartbeats during  $\tau_b$ ,  $\tau_d$ , and  $\tau_a$ , respectively. Firstly,  $R_d$  and  $R_a$  for each subject were derived. Then, average values  $R_d(\text{ave})$  and  $R_a(\text{ave})$  of these and S.E.M. (standard error of mean) for the 10 subjects were obtained. These are shown in Fig.1 for the control and the stimulation experiments for both  $R_d(\text{ave})$  and  $R_a(\text{ave})$ , as shown in this figure. This suggested that the music stimulation adopted in this experiment did not induce any

significant changes in heartbeat.

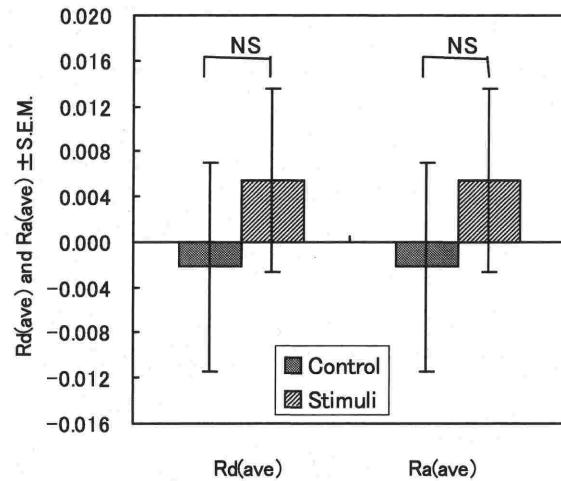



Fig.1  $R_d(\text{ave})$  and  $R_a(\text{ave}) \pm \text{S.E.M.}$  for stimulation and control experiments

### 4.2 LF, HF and LF/HF

Changing rates  $L_d$ ,  $L_a$ ,  $H_d$ ,  $H_a$ ,  $F_d$ , and  $F_a$  as defined by eqs.(3) to (8) were used to discuss changes in *LF*, *HF* and *LF/HF* values.

$$L_d = \frac{LF_d - LF_b}{LF_b}, \quad (3)$$

$$L_a = \frac{LF_a - LF_b}{LF_b}, \quad (4)$$

$$H_d = \frac{HF_d - HF_b}{HF_b}, \quad (5)$$

$$H_a = \frac{HF_a - HF_b}{HF_b}, \quad (6)$$

$$F_d = \frac{(LF/HF)_d - (LF/HF)_b}{(LF/HF)_b}, \quad (7)$$

$$F_a = \frac{(LF/HF)_a - (LF/HF)_b}{(LF/HF)_b}. \quad (8)$$

Here,  $LF_b$ ,  $LF_d$  and  $LF_a$  mean average values of *LF* during  $\tau_b$ ,  $\tau_d$  and  $\tau_a$ , respectively.  $HF_b$ ,  $HF_d$  and  $HF_a$  mean average values of *HF* during  $\tau_b$ ,  $\tau_d$  and  $\tau_a$ , respectively.  $(LF/HF)_b$ ,  $(LF/HF)_d$  and  $(LF/HF)_a$  mean



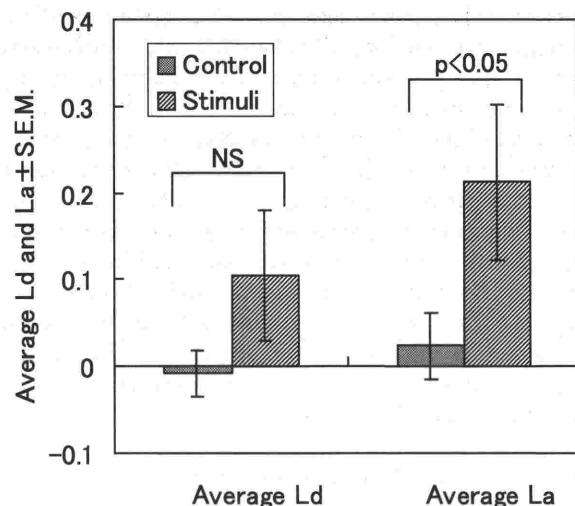
average values of  $LF/HF$  during  $\tau_b$ ,  $\tau_d$  and  $\tau_a$ , respectively.

Firstly, values given by eqs.(3)-(8) for each subject were calculated. Then, average values of these and S.E.M. for the 10 subjects were obtained. These are summarized in Tables I-III for the control and the stimulation experiments and are graphed in Figs.2-4. As shown in Table I (Fig.2),  $L_a$  increased significantly ( $p<0.05$ ). There was a slight tendency that  $L_d$  also increased, although it was not statistically significant. As shown in Table III (Fig.4),  $F_d$  decreased significantly ( $p<0.005$ ). There was a slight tendency that  $F_a$  also decreased, although it was not statistically significant.

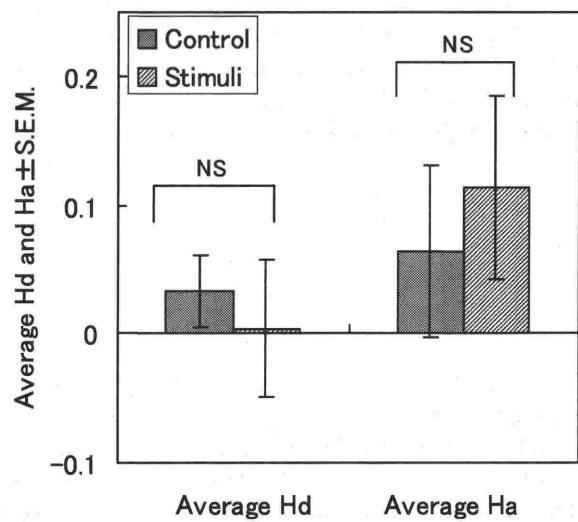
**Table I** Average values of  $L_d$  and  $L_a$  for the stimulation and control experiments

|                     | Average  | S.E.M. | t-test   |
|---------------------|----------|--------|----------|
| $L_d$ (stimulation) | 0.104    | 0.0753 | NS       |
| $L_d$ (control)     | -0.00771 | 0.0268 |          |
| $L_a$ (stimulation) | 0.213    | 0.0893 | $p<0.05$ |
| $L_a$ (control)     | 0.0237   | 0.0381 |          |

**Table II** Average values of  $H_d$  and  $H_a$  for the stimulation and control experiments


|                     | Average | S.E.M. | t-test |
|---------------------|---------|--------|--------|
| $H_d$ (stimulation) | 0.00406 | 0.0533 | NS     |
| $H_d$ (control)     | 0.0337  | 0.0276 |        |
| $H_a$ (stimulation) | 0.114   | 0.0717 | NS     |
| $H_a$ (control)     | 0.0636  | 0.0667 |        |

**Table III** Average values of  $F_d$  and  $F_a$  for the stimulation and control experiments


|                     | Average | S.E.M. | t-test    |
|---------------------|---------|--------|-----------|
| $F_d$ (stimulation) | -0.0299 | 0.0186 | $p<0.005$ |
| $F_d$ (control)     | 0.0863  | 0.0230 |           |
| $F_a$ (stimulation) | -0.0023 | 0.0505 | NS        |
| $F_a$ (control)     | 0.0931  | 0.0390 |           |

The increase of  $L_a$ , i.e. increase of  $LF$  during  $\tau_a$  meant that the stress level was decreased<sup>4-6)</sup> during  $\tau_a$ .

The same could be said about  $\tau_d$ , although it was not statistically significant. The decrease of  $F_d$ , i.e. decrease of  $LF/HF$  during  $\tau_d$  meant that the sympathetic nervous activity was suppressed<sup>4-6)</sup> during  $\tau_d$ . The same could be said about  $\tau_a$ , although it was not statistically significant.



**Fig.2** Average values  $\pm$ S.E.M. for  $L_d$  and  $L_a$  for stimulation and control experiments



**Fig.3** Average values  $\pm$ S.E.M. for  $H_d$  and  $H_a$  for stimulation and control experiments

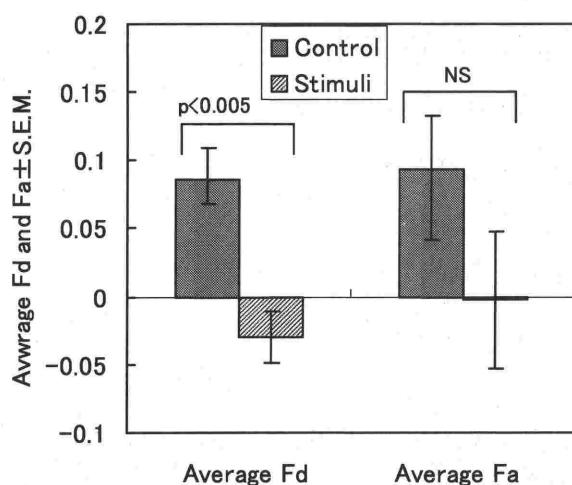



Fig.4 Average values  $\pm$ S.E.M. for  $F_d$  and  $F_a$  for stimulation and control experiments

As for a possible mechanism to explain the experiment results, it was considered that the music stimulated the auditory hair cells (the organ of Corti), which sent excitatory signals (depending on the music) to the medulla oblongata, midbrain, and finally hypothalamic area functioning as a high order nervous center for autonomic nervous activities, resulting in the changes in the heartbeat fluctuation as described above.

### 5. Conclusion

In this experiment, changes in heartbeat were measured before, during and after stimulation from listening to a pop song, "Kujira-12" recorded by the group Judy and Mary. Changes in heart rate,  $HF$ ,  $LF$  and  $LF/HF$  were derived. The heart rate was unchanged and  $F_d$  decreased significantly during  $\tau_a$ . This suggested that the stimulation suppressed activity of the sympathetic nervous system during stimulation. There was a similar decreasing tendency for  $F_a$ , although it was not statistically significant.

$L_a$  increased significantly during  $\tau_a$ . This suggested that mental stress was decreased after stimulation. There was a similar increasing tendency for  $L_d$ , although it was not statistically significant.

It was suggested that stimulation by this music suppressed the sympathetic nervous system activity and enhanced the parasympathetic nervous system activity, and this music stimulation seemed to be helpful for music therapy.

### References

- Yorishima, T. and Yorishima, T.: Ongaku Ryoho no Saizensen (Forefront of Music Therapy), *Shukan Igaku no Ayumi (Weekly progress of medicine)*, 226(12):1074-1075, 2008. [in Japanese]
- Ohisa, N., Yoshida, K., Sanbe, T. and Kaku, M.: Effect of Autonomic Nervous System Activity While Listening to Music, *Jiritsusinkei (Autonomic Nervous System)*, 42(3):265-269, 2005. [in Japanese]
- Wago, H.: Music Therapy helpful to Improve *Mibyo*, *Mibyo to Ko-roka (Pre-symptom and Anti-aging)*, 17(1):21-25, 2008. [in Japanese]
- Osuka E., Terashita Y. and Shimono T: Interpretation of Autonomous Nerve Index using Heart Vessel System Model, *BME*, 11-1:75-85, 1997. [in Japanese].
- Inoue K.: Relationship Between Autonomous Nerve Activities and Arousal Level Changes — Use of Power Spectrum Analysis of Heartbeat Fluctuation and Changing Rate of  $\alpha$ -Wave Amplitudes as Barometers: *Rinsho-Shinri-Seirigaku (Clinical Psycho-Physiology)*, 28(3):246-253, 2000. [in Japanese].
- Taniguchi K. et al.: Study of Evaluation of Surgical Assistant Systems: Objective Evaluation of Surgeon's Stress saliva and Acceleration Plethysmogram, *Proceedings of the 2007 JSME Conference on Robotics and Mathematics*, Akita, Japan, May 10-12, pp.1p1-G05(1)- 1p1-G05 (4), 2007.
- Tsuda R. and Takekawa H.: Quantitative Analysis of Mental Stress using Heart Rate Variability, *Memoirs of Kyushu-Tokai Univ.* 29:13-18, 2002. [in Japanese]



## 音楽刺激が心拍変動に与える影響

(Influence of Music Stimulation on Heartbeat Fluctuation)

青木孝志<sup>1</sup>、足達義則<sup>2</sup>、鈴木昭二<sup>3</sup>

(Takashi AOKI<sup>1</sup>, Yoshinori ADACHI<sup>2</sup> and Shoji SUZUKI<sup>3</sup>)

<sup>1</sup> 中部大学工学部 (日本、愛知)

<sup>2</sup> 中部大学経営情報学部 (日本、愛知)

<sup>3</sup> 鈴鹿工業高等専門学校 (日本、三重)

要旨：音楽刺激による心拍数および心拍ゆらぎの変化を調査した。被験者は 22-23 歳の健康な男子 10 人であった。音楽は一つの J-Pop, Judy and Mary の歌 “くじら 12 号” を用いた。音楽刺激の刺激前 5 分、刺激中 5 分、刺激後 5 分の脈波を測定した。その結果、心拍数に有意な変化は見られなかった。LF/HF は刺激中において有意に減少した (LF および HF は、それぞれ、心拍変動のパワースペクトルの low frequency 成分および high frequency 成分を意味する)。これは、刺激中に交感神経の活動を抑制することが示唆された。LF は刺激後有意に上昇した。これは刺激後においてストレスの軽減効果が示唆された。本実験で用いた音楽の刺激は音楽療法に効果があると思われる。

**Keywords:** Music stimulation, music therapy, heartbeat fluctuation, mental stress

### 1. はじめに

近年、多くの神経疾患に対し音楽療法の適応が有効であることがわかつってきた。音楽療法は、神経疾患を含む医療のみならず・心理・介護・福祉・教育などの広い分野に渡って実践される学際的な分野である。音楽刺激が人体に及ぼす影響の研究が活発になってきた<sup>1,2)</sup>。2001 年には、日本に、音楽療法学会が設立された。

現代社会は精神的ストレスや不安・恐れなどの感情が増大しているために、自律神経のバランスが崩れて多くの生活習慣病が発生している。こうした病気の多くは交感神経が優位すぎるために生じている。不定愁訴を伴う未病の状態を改善するには、交感神経の作用を沈め副交感神経の作用を誘導させることが大切である。この観点で効果を発揮するのが音楽療法であり、最近の研究からモーツアルトの音楽にその音の特性が豊富に存在す

ることが判明した<sup>3)</sup>。つまり、効果的な音楽療法は心と体を安静化させるので、未病の改善に役立つ簡単で有用なツールと考えられている。ハードロック音楽は交感神経活動を優位にする働きがあることが報告<sup>2)</sup>されているように、音楽によってその効果は異なる。

本研究目的は、一つの J-POP, “くじら 12 号” (JUDY AND MARY)の刺激が心拍変動のパワースペクトルの high frequency 成分 HF と low frequency 成分 LF に与える影響を調べることである。ここで、HF は主に副交感神経の支配を受けていて、自律神経障害や精神性負荷により副交感神経の活動が低下すると HF は小さくなるといわれている。LF は副交感神経と交感神経の両方の支配を受けていて、どちらの成分もストレスにより低下する。また、LF/HF は交感神経優位で増加する<sup>4-6)</sup>。

### 2. 実験方法

被験者の左リストの位置における脈波を脈波センサ (日本光電製の脈波心音センサ TK-701T 型) を用いてサンプリング時間 1/100 秒で測定した。



センサからの出力信号を生体アンプ（日本光電製 Bioelectric Amplifier AB601G 型）で増幅し、その出力信号は GPIB を介してパソコンに送り save した。被験者が椅子に腰掛けて精神的・肉体的に安定するのを待ってから計測開始した。はじめ音楽刺激なしで 5 分間計測し、引き続いて音楽刺激を 5 分間与えて計測し、最後に音楽刺激なしで 5 分間計測した。音楽刺激なしの対照実験も上記と同様なプロトコルにより行った。被験者は CD プレーヤーに接続したヘッドフォンをつけ、CD プレーヤーは、実験者の一人がコントロールした。対照実験として、音楽刺激なしで上記と同様な手順で測定した。被験者は 22-23 歳の健康な男子 10 人である。実験室の温度は 24°C 一定に保った。

### 3. 脈波間隔の時系列処理

一つの脈波のピーク時から次の脈波のピーク時までの時間間隔 (a-a 間隔) の時系列データを計測データから求めた。この時系列データの包絡線を直線補間し 100Hz で再サンプリングした<sup>7)</sup>。次に、この時系列の各値からその平均値を差し引いた新しい時系列を作った。これを、ハミング窓をかけた DFT(Discrete Fourier Transform) 計算を行い、パワースペクトルを求めた。スペクトル上の 0.15Hz ~0.45Hz の周波数帯域に存在する面積を求めて HF とした。同様に 0.05Hz~0.15Hz の周波数帯域に存在する面積を求めて LF とした<sup>7)</sup>。

### 4. 結果および考察

本考察においては、刺激前、刺激中および刺激後の時間区間を、それぞれ、 $\tau_b$ 、 $\tau_d$  および  $\tau_a$  と記述することにする。上述のとおり、これらは全て 5 分である。

#### 4.1 心拍数

音楽の刺激前において、被験者達の心拍数  $P$  の値は、最小値で約 40/min から最大値で約 60/min までの範囲のばらつきがあった。そこで、音楽刺激による  $P$  の値の変化を検討するにあたって、次の式(1)および(2)で定義する変化率  $R_d$  および  $R_a$  を用いることとする。

$$R_d = \frac{P_d - P_b}{P_b}, \quad (1)$$

$$R_a = \frac{P_a - P_b}{P_b}. \quad (2)$$

上式で、 $P_b$ 、 $P_d$  および  $P_a$  は、それぞれ、 $\tau_b$ 、 $\tau_d$  および  $\tau_a$  の各 5 分間の平均の心拍数である。各被験者の  $R_d$  および  $R_a$  を求め、全被験者 10 人に対するこれらの値の平均値  $R_d(\text{ave})$  および  $R_a(\text{ave}) \pm \text{S.E.M.}$  (標準誤差) を算出した。その結果を、刺激群と対照群に対して Fig.1 に示した。刺激群と対照群に有意な差があるか  $t$  検定したところ、 $R_d(\text{ave})$  および  $R_a(\text{ave})$ 、ともに有意な差はみられなかった。このことは、本刺激は心拍数に有意な変化をもたらさないことを示唆している。

#### 4.2 LF, HF および LF/HF

$LF$ 、 $HF$  および  $LF/HF$  の値の変化を検討するにあたって、次の(3)-(8)式で定義する変化率  $L_d$ 、 $L_a$ 、 $H_d$ 、 $H_a$ 、 $F_d$  および  $F_a$  を用いることとする。

$$L_d = \frac{LF_d - LF_b}{LF_b}, \quad (3)$$

$$L_a = \frac{LF_a - LF_b}{LF_b}, \quad (4)$$

$$H_d = \frac{HF_d - HF_b}{HF_b}, \quad (5)$$

$$H_a = \frac{HF_a - HF_b}{HF_b}, \quad (6)$$

$$F_d = \frac{(LF/HF)_d - (LF/HF)_b}{(LF/HF)_b}, \quad (7)$$

$$F_a = \frac{(LF/HF)_a - (LF/HF)_b}{(LF/HF)_b}. \quad (8)$$

上式において、 $LF_b$ 、 $LF_d$ 、 $LF_a$  は、それぞれ、 $\tau_b$ 、 $\tau_d$  および  $\tau_a$  の各 5 分間の平均の  $LF$  の値である。 $HF_b$ 、 $HF_d$  および  $HF_a$  は、それぞれ、 $\tau_b$ 、 $\tau_d$  および  $\tau_a$  の各 5 分間の平均の  $HF$  の値である。また、 $(LF/HF)_b$ 、 $(LF/HF)_d$  および  $(LF/HF)_a$  は、それぞれ、 $\tau_b$ 、 $\tau_d$ 、 $\tau_a$  の各 5 分間の平均の  $LF/HF$  の値である。

先ず各被験者に対して式(3)-(8)の値を求めた。次に、全被験者 10 人に対するこれらの値の平均値  $\pm \text{S.E.M.}$  を算出した。その結果を刺激群と対照群に対して Table I-III に示した。これらはグラフ化して Figs.2-4 に示した。Table I(Fig.2)に示すように



$L_a$  が有意な増加傾向を示している ( $p < 0.05$ )。有意差はないが  $L_d$  も増加傾向が見られる。また、Table III(Fig.4)に示すように  $F_d$  が有意な減少を示している ( $p < 0.005$ )。有意差はないが  $F_a$  も減少傾向が見られる。

$L_a$  の増大、即ち、 $LF$  が  $\tau_a$  において増大したということは、音楽刺激後ストレスが減少<sup>4-7)</sup>したことを示唆している。有意差はないが  $\tau_d$  においても類似の傾向がありそうである。 $F_d$  の減少、即ち、 $LF/HF$  が  $\tau_d$  において減少したという実験事実は、 $\tau_d$  において交感神経活動が抑制<sup>4-7)</sup>されたことを示唆する。有意差はないが  $\tau_a$  においてもこれと類似の傾向がありそうである。

本実験結果を説明するメカニズムとしては、聴覚受容器であるコルチ器官の有毛細胞がその音楽特有の電気パルスを発生し、これが延髄、中脳、視床へと伝達される。そこからの信号は、自律神経の高次中枢である視床下部へと伝わり自律神経に影響を与え、心拍揺らぎに上記結果のような影響を与えたと我々は考えている。

## 5. おわりに

本実験では、J-POP、“くじら12号”の刺激前・刺激中・刺激後において、心拍を測定し、心拍数、 $LF$ 、 $HF$  および  $LF/HF$  の変化を得た。その結果、心拍数に有意な変化は見られなかった。一方、 $F_d$  が  $\tau_d$  において有意な減少を示した。これは、刺激中において交感神経活動が抑制されたことを示唆する。有意差は無いが  $F_a$  についても同様な傾向がみられた。

$L_a$  が  $\tau_a$  において有意な増大を示した。これは、音楽刺激後ストレスが減少したことを意味している。有意差は無いが  $L_d$  についても同様な傾向がみられた。

本実験で用いた音楽の刺激は交感神経の作用を沈め副交感神経の作用を誘導させることを示唆しているので音楽療法に有効と思われる。

## 文献

- 1) 賴島敬、賴島敬：音楽療法の最前線、週刊医学のあゆみ.226 (12),1074-1075(2008)
- 2) 大久典子、吉田克己、山家智之、賀来満夫：音楽刺激が自律神経に及ぼす影響 (Effect of autonomic

nervous system activity while listening to music) 自律神経42(3).265-269(2005)

- 3) 和合治久：未病の改善に役立つ音楽療法、未病と抗老化17(1),21-25(2008)
- 4) 大須賀美恵子、寺下裕美、下野太海：心臓血管系モデルを用いた自律神経指標の解釈、BME, 11(1), 75-85, 1997.
- 5) 井上清子：自律神経活動と覚醒度の変化との関係について一心拍変動パワースペクトル解析と脳波の  $\alpha$  波振幅変化率を指標として一、臨床神経生理学、28-3,pp246-253, 2000.
- 6) 谷口和弘、et al.：手術支援システムの評価方法の検討：唾液と加速度脈波によるストレスの客観的な評価、Proceedings of the 2007 JSME Conference on Robotics and Mathematics, Akita, Japan, May 10-12, pp.1p1-G05(1)-1p1-G05 (4), 2007.
- 7) 津田良一、竹川仁志：心拍変動による精神作業ストレスの定量解析、九州東海大学紀要、応用情報学部第3号（工学部第29号）pp.13-18, 2002.

(Figs.1-4, Tables I-III, 英文頁参照)